Conversion of dBm, dBmV and dBµV in CATV Abstract: Cable TV systems are generally based on a 75Ω interface, but the impedance of most RF test equipment is 50Ω. This article describes some necessary conversions between power and level between these two environments. Two tables are provided to quickly find the appropriate conversion parameters. The CATV system works in a 75Ω environment. Most of the standard test instruments equipped in RF laboratories use 50Ω as the standard interface impedance. Most CATV measurements are based on voltage and measured in dBmV or dBµV. According to the standard definition, dBmV is referenced to 1mVrms, and the output voltage (Vout) is measured in units of mVrms (EQN1). Since EQN1 obtains a voltage ratio, it can also be measured in units of mVpp when taking 1mVpp as a reference value; or it can be expressed in other voltage units, as long as they use the same units. It can be seen from EQN1 that dBmV has nothing to do with impedance. It can be seen from EQN2 that dBµV has nothing to do with impedance. EQN3 gives the definition of dBm. The unit of measurement for Pout is mW, and dBm is referenced to 1mW. EQN3 is related to load impedance, as shown in EQN4. Most RF equipment has a 50Ω load and input impedance. EQN3 is correct for any load impedance, including 75Ω loads. Organize all available: Solve EQN3 and get Pout, Solve for EQN1 and get Vout, Substitute EQN3.1 and EQN1.1 into EQN4.1, Express dBmV in dBm, When R = 50Ω, EQN5.2 is suitable for measuring devices with an impedance of 50Ω. EQN5.3 is suitable for measuring equipment with an impedance of 75Ω. Table 1 and Table 2 show the conversion relationship between dBmV, dBµV and dBm under the conditions of 50Ω and 75Ω respectively. Solar Power Systems,Home Solar Power System,Solar Micro Inverter,High Frequence Power Inverter Shengtian New Energy (Shenzhen) Co., Ltd. , https://www.stenergysolar.com
More information:
In the standard definition, dBµV is referenced to 1µVrms, and the output voltage (Vout) is measured in µVrms (EQN2). Because EQN2 obtains a voltage ratio, it can also be measured in units of µVpp when taking 1µVpp as a reference; or it can be expressed in other voltage units, as long as they use the same units.
The power depends on the load impedance. EQN4 establishes the relationship between power and output voltage and load impedance.
When R = 75Ω, solving EQN5.1 gives:
Using the same method, the relationship between dBµV and dBmV can be obtained as follows,
Table 1. Power conversion at 50Ω impedance dBmV dBµV dBm 50Ω mVrms mW 50Ω 8 68 -38.99 2.51 1.3E-04 9 69 -37.99 2.82 1.6E-04 10 70 -36.99 3.16 2.0E-04 11 71 -35.99 3.55 2.5E-04 12 72 -34.99 3.98 3.2E-04 13 73 -33.99 4.47 4.0E-04 14 74 -32.99 5.01 5.0E-04 15 75 -31.99 5.62 6.3E-04 16 76 -30.99 6.31 8.0E-04 17 77 -29.99 7.08 1.0E-03 18 78 -28.99 7.94 1.3E-03 19 79 -27.99 8.91 1.6E-03 20 80 -26.99 10.00 2.0E-03 twenty one 81 -25.99 11.22 2.5E-03 twenty two 82 -24.99 12.59 3.2E-03 twenty three 83 -23.99 14.13 4.0E-03 twenty four 84 -22.99 15.85 5.0E-03 25 85 -21.99 17.78 6.3E-03 26 86 -20.99 19.95 8.0E-03 27 87 -19.99 22.39 0.010 28 88 -18.99 25.12 0.013 29 89 -17.99 28.18 0.016 30 90 -16.99 31.62 0.020 31 91 -15.99 35.48 0.025 32 92 -14.99 39.81 0.032 33 93 -13.99 44.67 0.040 34 94 -12.99 50.12 0.050 35 95 -11.99 56.23 0.063 36 96 -10.99 63.10 0.080 37 97 -9.99 70.79 0.100 38 98 -8.99 79.43 0.126 39 99 -7.99 89.13 0.159 40 100 -6.99 100.00 0.200 41 101 -5.99 112.20 0.252 42 102 -4.99 125.89 0.317 43 103 -3.99 141.25 0.399 44 104 -2.99 158.49 0.502 45 105 -1.99 177.83 0.632 46 106 -0.99 199.53 0.796 47 107 0.01 223.87 1.002 48 108 1.01 251.19 1.262 49 109 2.01 281.84 1.589 50 110 3.01 316.23 2.000 51 111 4.01 354.81 2.518 52 112 5.01 398.11 3.170 53 113 6.01 446.68 3.991 54 114 7.01 501.19 5.024 55 115 8.01 562.34 6.325 56 116 9.01 630.96 7.962 57 117 10.01 707.95 10.024 58 118 11.01 794.33 12.619 59 119 12.01 891.25 15.887 60 120 13.01 1000.00 20.000 61 121 14.01 1122.02 25.179 62 122 15.01 1258.93 31.698 63 123 16.01 1412.54 39.905 64 124 17.01 1584.89 50.238 65 125 18.01 1778.28 63.246 66 126 19.01 1995.26 79.621 67 127 20.01 2,238.72 100.237 68 128 21.01 2511.89 126.191
Table 2. Power conversion at 75Ω impedance dBmV dBµV dBm 75Ω mVrms mW 75Ω 8 68 -40.75 2.51 8.4E-05 9 69 -39.75 2.82 1.1E-04 10 70 -38.75 3.16 1.3E-04 11 71 -37.75 3.55 1.7E-04 12 72 -36.75 3.98 2.1E-04 13 73 -35.75 4.47 2.7E-04 14 74 -34.75 5.01 3.3E-04 15 75 -33.75 5.62 4.2E-04 16 76 -32.75 6.31 5.3E-04 17 77 -31.75 7.08 6.7E-04 18 78 -30.75 7.94 8.4E-04 19 79 -29.75 8.91 1.1E-03 20 80 -28.75 10.00 1.3E-03 twenty one 81 -27.75 11.22 1.7E-03 twenty two 82 -26.75 12.59 2.1E-03 twenty three 83 -25.75 14.13 2.7E-03 twenty four 84 -24.75 15.85 3.3E-03 25 85 -23.75 17.78 4.2E-03 26 86 -22.75 19.95 5.3E-03 27 87 -21.75 22.39 6.7E-03 28 88 -20.75 25.12 8.4E-03 29 89 -19.75 28.18 0.011 30 90 -18.75 31.62 0.013 31 91 -17.75 35.48 0.017 32 92 -16.75 39.81 0.021 33 93 -15.75 44.67 0.027 34 94 -14.75 50.12 0.033 35 95 -13.75 56.23 0.042 36 96 -12.75 63.10 0.053 37 97 -11.75 70.79 0.067 38 98 -10.75 79.43 0.084 39 99 -9.75 89.13 0.106 40 100 -8.75 100.00 0.133 41 101 -7.75 112.20 0.168 42 102 -6.75 125.89 0.211 43 103 -5.75 141.25 0.266 44 104 -4.75 158.49 0.335 45 105 -3.75 177.83 0.422 46 106 -2.75 199.53 0.531 47 107 -1.75 223.87 0.668 48 108 -0.75 251.19 0.841 49 109 0.25 281.84 1.059 50 110 1.25 316.23 1.333 51 111 2.25 354.81 1.679 52 112 3.25 398.11 2.113 53 113 4.25 446.68 2.660 54 114 5.25 501.19 3.349 55 115 6.25 562.34 4.216 56 116 7.25 630.96 5.308 57 117 8.25 707.95 6.683 58 118 9.25 794.33 8.413 59 119 10.25 891.25 10.591 60 120 11.25 1000.00 13.333 61 121 12.25 1122.02 16.786 62 122 13.25 1258.93 21.132 63 123 14.25 1412.54 26.604 64 124 15.25 1584.89 33.492 65 125 16.25 1778.28 42.164 66 126 17.25 1995.26 53.081 67 127 18.25 2,238.72 66.825 68 128 19.25 2511.89 84.128